EVOLUTION OF GAS CHROMATOGRAPHY

BY JOHN BUIE

While the history of gas chromatography (GC) dates back to the first experiments at Atwood’s lab, separating plant pigments using paper chromatography in 1900, making the gas chromatograph easier to use in labs today.

1959 – GOWMAC, whose roots date back to developing thermal conductivity detectors (TCDs) in 1953 to measure the carbon dioxide content of exhaust gas for customers such as the U.S. Navy during World War II, developed a revolutionary new technique named gas chromatography.

1961 – Researchers were finding new applications for temperature-programmable instruments in response. PerkinElmer developed the Model 441, which attached to the Model 126 Vapor Fractionator was its detector. The Model 222 was the first gas chromatograph with a resistance-heated packed column, which removed the drifts between set and actual column temperatures.

1967 – The Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy (Pittcon) to this day remains the most important industry trade show in the scientific industry, and over 80 years ago that held true as well. There was no better forum for PerkinElmer to release its first flagship gas chromatograph, the Model 900, which continued to dominate the GC market for the next decade. The Model 900 introduced several improvements, including the ability to use two columns and multiple detectors, setting a new bar in versatility and sophistication.

1968 – The Olympic Winter Games in Innsbruck, Austria proved to be the testing ground for the newest gas chromatograph in the PerkinElmer line, one that was affordable price could rapidly perform drug screening for college feeder schools. The Model 3920 delivered, making it one of their most successful instruments.

1972 – Responding to the need for simplified chemical analysis and more compounds to be analyzed, HP developed fused silica capillary columns for gas chromatography.

1974 – Hearing of HP’s revolutionary new small diameter, packed columns, Dr. John Lipsky, an innovator in GC technology, sought to incorporate the Discharge Ionization Detector (DID) and revolutionized the gas industry. This universal, non-intrusive detector capable of performing trace gas impurity analysis in the ppb range quickly became an industry standard.

1981 – Shimadzu launched the GC-8A, which changed GC system design by offering a smaller, compact size and a solid, die-cast frame.

1986 – In this day, the all time best-selling GC, the HP 5940, released 25 years ago, it’s still one of the most active instruments in equipment refurbishment — just search “HP 5940” on www.LabX.com

1990 – With the evolution of the GC system and new software, the demand for a broader range of application-focused detectors grew. GOWMAC patented the Discharge Ionization Detector (DID) and revolutionized the gas industry. This universal, non-intrusive detector capable of performing trace gas impurity analysis in the ppb range quickly became an industry standard.

2003 – With 17 associated patents behind the Varian 4000 GC/MS, a breakthrough in GC flexibility becomes available to researchers. The system allows users to choose from three separate ionization configurations to increase application-specific performance. The three configurations include Internal Ionization, External Ionization and Hybrid Chemical Ionization, which allow users to select a suitable chemical ionization (CI) reagent and separate specific target tox for reaction with sample molecules.

2007 – After being spun off from its parent company, HP, recently named Agilent Technologies, released the 7890A GC. This new model incorporates capillary flow technology.

2010 – The Future of Gas Chromatographs - Massar’s ‘twinkles’ of Shimadzu’s MS/GC business unit made these comments regarding the future of the gas chromatograph, “By using state-of-the-art technology to view compounds in even more detail, a secondary column with different characteristics is used to conduct a more detailed analysis, and this type of method is referred to as multidimensional GC.” He also added, “It can be expected that GC will become more like sensor technology as higher speeds are achieved.” GC manufacturers are confident that gas chromatography will continue to play an ever more important role in labs, as the equipment continues to evolve to meet the demands of more challenging applications, as well as increasing efficiency and daily analysis.