Hitachi High-Technologies Corporation announced that its wholly owned subsidiary and analytical instrument manufacturer and marketer Hitachi High-Tech Science Corporation (HHT Science) has developed the new “NEXTA STA Series” of thermal analyzers. The NEXTA STA Series enables high-sensitivity measurements through its world-class baseline performance. HHT Science will launch the NEXTA STA Series in the Japanese and overseas markets.

“Thermal analyzer” is a generic term for an instrument designed to measure the basic thermal properties of materials (thermophysical properties). Some common techniques used to measure these properties are thermogravimetry (TG), which measures changes in weight, and differential thermal analysis (DTA) and differential scanning calorimetry (DSC), which measure changes in temperature. Thermal analyzers are used in various applications from research and development to quality control and fault analysis in a wide variety of fields ranging from organic materials such as plastics, composite materials, and pharmaceuticals, to inorganic materials such as ceramics and alloys.

In recent years, materials have seen increased functionality and complexity, and with this, the requirements for thermophysical assessment through the use of a thermal analyzer have become more diverse and sophisticated. In fault analysis of electronics, whose performance continues to improve, high baseline sensitivity is needed to analyze and measure the components of minute sample quantities. In addition, because of the widespread use of composite materials, it has become increasingly necessary to simultaneously acquire data on multiple components in a single measurement.

The NEXTA STA Series to be launched continues to employ the “Horizontal Digital Dual Beam System, which has an established reputation for high sensitivity even with conventional thermal analyzers. A newly introduced mechanism to keep the temperature of the balance section constant eliminates small errors in weight due to changes in the heating furnace temperature. With the above technologies, the NEXTA STA achieves world-class baseline performance.

Simultaneous TG-DTA measurements have been possible with conventional thermal analyzers. However, DSC can quantify the changes in the heat flow of a sample more precisely than DTA, and because of this, the customer’s need for simultaneous TG-DSC measurements has increased. With the improvement in heat-flow-measurement precision, HHT Science offers the capability of simultaneous TG-DSC measurements.

In addition to supporting the popular Real View® Sample Observation Thermal Analysis, the NEXTA STA has realized capabilities that can respond to the measurement needs of customers, such as improving the gas displacement performance.