Lab Manager | Run Your Lab Like a Business

News

Orang sky and glowing sun representing a heat wave
iStock, Xurzon

A Good Simulation of Heat Wave Frequency Variation by a Machine-Learning Model

The best simulation results were obtained sing climate factors in the previous winter

by Institute of Atmospheric Physics, Chinese Academy of Sciences
Register for free to listen to this article
Listen with Speechify
0:00
5:00

Against the background of global warming, the European region has experienced several severe extreme heat wave events in recent decades, which have had a huge socioeconomic and environmental impacts. It is therefore important for governments to improve the ability of climate models to predict heat wave events. However, the ability of most climate models in this regard is highly limited at present, mainly because they cannot simulate well the feedback between the atmospheric and boundary-layer physical quantities. Thus, we are still lacking in our understanding of the roles and relative contributions of these processes. It remains a great challenge to improve the ability of models to predict heat waves.

Recently, the team of Professor Jiaxiao Jing from Zhejiang University simulated the variations in summer heat wave frequency in eastern Europe by using the spatiotemporal decomposition method combined with the LightGBM machine-learning model and analyzed the contributions of multiple climate factors from the lower boundary layer (see figure, below). The results have been published in Atmospheric and Oceanic Science Letters.

Get training in Materials and Substance Tracking and earn CEUs.One of over 25 IACET-accredited courses in the Academy.
Materials and Substance Tracking Course

“The climate factors selected in the machine-learning model include the sea surface temperature, soil moisture, snow, and sea ice in the previous winter, previous spring, and the simultaneous summer. Our results show that the LightGBM model can simulate well the variation in summer heatwave frequency in eastern Europe, and the SST factor contributes the most to the model simulation”, says Jia.

In addition, further study found that the best simulation results were obtained by using the climate factors in the previous winter.

“Clearly, the underlying surface climate factors, especially the sea surface temperature, are very important for improving the climate model’s prediction of the characteristics of summer heat waves in eastern Europe, but its related mechanisms need to be further studied”, adds Jia.

- This press release was originally published on the Institute of Atmospheric Physics, Chinese Academy of Sciences website