Lab Manager | Run Your Lab Like a Business

News

JEOL Collaborates with RIKEN and Kyoto University on Pioneering Electron and Nmr Crystallography to Discover Novel Drug Structures

Single crystal X-ray diffraction analysis of low-molecular-weight active pharmaceutical ingredient crystal structures requires a single crystal of 10 μm or more, making microcrystal analysis challenging

by JEOL USA
Register for free to listen to this article
Listen with Speechify
0:00
5:00

3 September 2019, PEABODY, MA — Researchers at the RIKEN-JEOL Collaboration Center and the Kyoto University iCeMS (Material-Cell Integrated System Center) have developed a nuclear magnetic resonance (NMR) crystallography method for observing crystal structure in detail, including the position of hydrogen atoms. 

Single crystal X-ray diffraction (SCXRD) analysis of low-molecular-weight active pharmaceutical ingredient (API) crystal structures requires a single crystal of 10 μm or more, making microcrystal analysis challenging. The collaborative research group has integrated whole structure analysis by electron diffraction (ED) and local structure analysis by solid-state NMR (SSNMR), utilizing first-principles quantum chemical calculations, to observe microcrystals of 0.1 to 1 μm. With this method, it was also possible to analyze substances in mixtures, which are often found in general preparations and usually pose a challenge for XRD techniques. 

Get training in Biosafety and Biosecurity and earn CEUs.One of over 25 IACET-accredited courses in the Academy.
Biosafety and Biosecurity Course

“Using this new electron and NMR crystallography technique, we could confirm the structure of the model system L-histidine, and succeeded in the structural analysis of the drug cimetidine (crystal form B), whose structure was previously unknown," said Dr. Michael Frey, analytical instruments product manager, JEOL USA, Inc. "The advanced capabilities of the JEOL JNM-ECZ600R spectrometer and 3.2 mm double-resonance magic angle spinning (MAS) Probe for SSNMR measurements, and the JEM-2200FS transmission electron microscope for ED measurements, have helped further our understanding of the hydrogen-bonding network in these microcrystals.”

The results of this research have demonstrated the importance of accurately determining both the structure and the hydrogen positions in microcrystals, and are expected to contribute to the quality improvement of small molecule drugs to treat conditions such as lifestyle-related diseases and hay fever. These methods may contribute to future quality assurance of pharmaceuticals, and lead to the discovery of more unknown crystal forms. 

The collaboration center, established jointly by RIKEN and JEOL Ltd. (JEOL), opened in November 2014 with the aim of creating unique technologies in the field of analytical and diagnostic instruments. You can view the full results of this research in Nature Communications here: https://www.nature.com/articles/s41467-019-11469-2

To find out more, contact your local JEOL specialist, or visit: www.jeolusa.com.