Lab Manager | Run Your Lab Like a Business
microbubbles illustration

Scientists Use Microbubbles for Highly Localized Drug Release

New research shows that it is possible to manipulate microbubbles through the use of "acoustical tweezers," a tool that uses an acoustical beam to trap an object without contact

by CNRS
Register for free to listen to this article
Listen with Speechify
0:00
5:00

Microbubbles are used every day as contrast agents in medical sonography, and are the subject of intense research for the delivery of therapeutic agents. There are a number of options available to manipulate these microbubbles, including the use of light and sound, although the potential of the latter remains largely unexplored. 

In their research published on June 22 in PNAS, CNRS researcher Diego Baresch and Valeria Garbin, a researcher at the Delft University of Technology (The Netherlands), show that it is entirely possible to manipulate microbubbles through the use of "acoustical tweezers," a tool developed in 2016 that uses an acoustical beam to trap an object without contact. In using these acoustical tweezers through layers of bio-mimicking and elastic materials, they successfully surpassed the limitations of optical tweezers,which cannot propagate through opaque media (such as in vivo tissue). 

As a result, the scientists have opened the way for a broader application of acoustical tweezers in biology and biomedicine, for instance for the highly-localized, reproducible, and controlled delivery of medicine, or for in vitro tissue engineering using stem cells.

- This press release was originally published on the CNRS website