Scientists Develop a Potential Low Cost Alternative to Platinum for Splitting Water

This technique holds promise for the creation of catalytic materials that can serve as effective low-cost alternatives to platinum for generating hydrogen gas from water that is acidic.

Written byOther Author
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

A technique for creating a new molecule that structurally and chemically replicates the active part of the widely used industrial catalyst molybdenite has been developed by researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). This technique holds promise for the creation of catalytic materials that can serve as effective low-cost alternatives to platinum for generating hydrogen gas from water that is acidic.

Christopher Chang and Jeffrey Long, chemists who hold joint appointments with Berkeley Lab and the University of California (UC) Berkeley, led a research team that synthesized a molecule to mimic the triangle-shaped molybdenum disulfide units along the edges of molybdenite crystals, which is where almost all of the catalytic activity takes place. Since the bulk of molybdenite crystalline material is relatively inert from a catalytic standpoint, molecular analogs of the catalytically active edge sites could be used to make new materials that are much more efficient and cost-effective catalysts.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - November/December 2025

AI & Automation

Preparing Your Lab for the Next Stage

Lab Manager Nov/Dec 2025 Cover Image