network of hexagons made of silver metal tubes and balls over a silver metallic background

A New Graphene Oxide Film Protects Against Hydrogen

The pore-free graphene oxide film paves the way for improved applications in energy and coatings

Written byKumamoto University
| 1 min read
Register for free to listen to this article
Listen with Speechify
0:00
1:00

Kumamoto University’s research team, led by Assistant Professor Kazuto Hatakeyama and Professor Shintaro Ida of Institute of Industrial Nanomaterials, has announced a groundbreaking development in hydrogen ion barrier films using graphene oxide (GO) that lacks internal pores. This innovative approach promises significant advancements in protective coatings for various applications.
  
In their study, the research team successfully synthesized and developed a thin film from a new form of graphene oxide that does not contain pores. Traditionally, GO has been known for its high ionic conductivity, which made it challenging to use as an ion barrier. However, by eliminating the internal pores, the team created a material with dramatically improved hydrogen ion barrier properties.

 The new graphene oxide film exhibits up to 100,000 times better hydrogen ion barrier performance compared to conventional GO films, as demonstrated by out-of-plane proton conductivity results from AC impedance spectroscopy. This breakthrough was further confirmed in experiments where the non-porous graphene oxide coating effectively protected lithium foil from water droplets, preventing any reaction between the lithium and the water.

Lab manager academy logo

Chemical Hygiene Course

Get training in Chemical Hygiene and earn CEUs.

One of over 40 IACET-accredited courses in the Academy.

The study also confirmed that hydrogen ions move through the pores in conventional GO, highlighting the significance of eliminating these pores to enhance barrier capabilities. This advancement opens doors to new applications in protective coatings, rust prevention, and hydrogen infrastructure.
  
 This research marks a significant advance in materials science and could pave the way for next-generation coatings with enhanced protective properties. "Moving forward, we plan to harness the hydrogen ion barrier performance for practical applications, while also addressing the challenges posed by the 'pores' in the GO structure to unlock additional functionalities," explained Assistant Professor Hatakeyama as he outlined the next steps in his research.

-Note: This news release was originally published on the Kumamoto University website. As it has been republished, it may deviate from our style guide.

Related Topics

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - May/June 2025

The Benefits, Business Case, And Planning Strategies Behind Lab Digitalization

Joining Processes And Software For a Streamlined, Quality-First Laboratory

Lab Manager May/June 2025 Cover Image