Creativity Leads to Measuring Ultrafast, Thin Photodetector

Student comes up with an inventive way of measuring the near-instantaneous electrical current generated using a light detector 

Written byTom Fleischman-Cornell University News Office
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

Making an incredibly fast photodetector is one thing, but actually measuring its speed is another.

Graduate student Haining Wang came up with an inventive way of measuring the near-instantaneous electrical current generated using a light detector that he and a team of Cornell University engineers made using an atomically thin material.

The team, headed by Farhan Rana, associate professor in the School of Electrical and Computer Engineering, measured the ultrafast response of their two-dimensional photodetector using a strobe-like process called two-pulse photovoltage correlation.

The team’s paper, “Ultrafast response of monolayer molybdenum disulfide photodetectors,” was published in Nature Communications, Nov. 17.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - November/December 2025

AI & Automation

Preparing Your Lab for the Next Stage

Lab Manager Nov/Dec 2025 Cover Image