Lab Manager | Run Your Lab Like a Business
a 3d illustration of a DNA molecule with one strand in blue and the other in red. Part of the red strand has been separated from the rest of the molecule. The strands are composed of many small lines connecting to dots with additional glowing dots surrounding the molecule, all on a dark blue background.

RNA-Targeting Tech Manipulates Genes

The technology uses CRISPR to control RNA splicing

by Donnelly Center, University of Toronto
Register for free to listen to this article
Listen with Speechify
0:00
5:00

Researchers at the University of Toronto have harnessed a bacterial immune defense system, known as CRISPR, to efficiently and precisely control the process of RNA splicing.

The technology opens the door to new applications, including systematically interrogating the functions of parts of genes and correcting splicing deficiencies that underlie numerous diseases and disorders.

Get training in Lab Crisis Preparation and earn CEUs.One of over 25 IACET-accredited courses in the Academy.
Lab Crisis Preparation Course

“Almost all human genes produce RNA transcripts that undergo the process of splicing, whereby coding segments, called exons, are joined together and non-coding segments, called introns, are removed and typically degraded,” said Jack Daiyang Li, first author on the study and PhD student of molecular genetics, working in the labs of Benjamin Blencowe and Mikko Taipale at U of T’s Donnelly Centre for Cellular and Biomolecular Research.

Exons can be alternatively spliced, such that the regulation and function of the approximately 20,000 human genes that encode proteins are greatly diversified, allowing the development and functional specialization of different types of cells.

However, it is unclear what most exons or introns do, and the mis-regulation of normal alternative splicing patterns is a frequent cause or contributing factor to various diseases, such as cancers and brain disorders. However, existing methods that allow for the precise and efficient manipulation of splicing have been lacking.

In the new research study, a catalytically-deactivated version of an RNA targeting CRISPR protein, referred to as dCasRx, was joined to more than 300 splicing factors to discover a fusion protein, dCasRx-RBM25. This protein is capable of activating or repressing alternative exons in an efficient and targeted manner.

“Our new effector protein activated alternative splicing of around 90 percent of tested target exons,” said Li. “Importantly, it is capable of simultaneously activating and repressing different exons to examine their combined functions.”

This multi-level manipulation will facilitate the experimental testing of functional interactions between alternatively spliced variants from genes to determine their combined roles in critical developmental and disease processes.

“Our new tool makes possible a broad range of applications, from studying gene function and regulation, to potentially correcting splicing defects in human disorders and diseases”, said Blencowe, principal investigator on the study, Canada Research Chair in RNA Biology and Genomics, Banbury Chair in Medical Research and professor of molecular genetics at the Donnelly Centre and the Temerty Faculty of Medicine.

“We have developed a versatile engineered splicing factor that outperforms other available tools in the targeted control of alternative exons,” said Taipale, also principal investigator on the study, Canada Research Chair in Functional Proteomics and Proteostasis, Anne and Max Tanenbaum Chair in Molecular Medicine and associate professor of molecular genetics at the Donnelly Centre and Temerty Medicine. “It is also important to note that target exons are perturbed with remarkably high specificity by this splicing factor, which alleviates concerns about possible off-target effects.”

The researchers now have a tool in hand to systematically screen alternative exons to determine their roles in cell survival, cell type specification and gene expression.

When it comes to the clinic, the splicing tool has potential to be used to treat numerous human disorders and diseases, such as autism and cancers, in which splicing is often disrupted.

The study was published in the journal Molecular Cell.

This research was supported by the Canadian Institutes of Health Research and the Simons Foundation.

-Note: This news release was originally published on the Donnelly Center, University of Toronto website. As it has been republished, it may deviate from our style guide.