‘Invisible’ Particles Could Enhance Thermoelectric Devices

New approach could improve the efficiency of devices that harness power from temperature differences.

Written byLab Manager
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

New approach could improve the efficiency of devices that harness power from temperature differences.

Thermoelectric devices — which can either generate an electric current from a difference in temperature or use electricity to produce heating or cooling without moving parts — have been explored in the laboratory since the 19th century. In recent years, their efficiency has improved enough to enable limited commercial use, such as in cooling systems built into the seats of automobiles. But more widespread use, such as to harness waste heat from power plants and engines, calls for better materials.

Now, a new way of enhancing the efficiency of such devices, developed by researchers at the Massachusetts Institute of Technology (MIT) and Rutgers University, could lead to such wider applications. The new work, by mechanical engineering professor Gang Chen, Institute Professor Mildred Dresselhaus, graduate student Bolin Liao, and recent postdoc Mona Zebarjadi and research scientist Keivan Esfarjani (both of whom are now on the faculty at Rutgers), has been published in the journal Advanced Materials.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image