‘Slow Light’ Advance Could Speed Optical Computing, Telecommunications

Researchers have made the first demonstration of rapidly switching on and off “slow light” in specially designed materials at room temperature.

Written byLos Alamos National Laboratory
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

Metamaterials provide active control of slow-light devices

LOS ALAMOS, N.M., Feb. 12, 2013—Wireless communications and optical computing could soon get a significant boost in speed, thanks to “slow light” and specialized metamaterials through which it travels.

Researchers have made the first demonstration of rapidly switching on and off “slow light” in specially designed materials at room temperature. This work opens the possibility to design novel, chip-scale, ultrafast devices for applications in terahertz wireless communications and all-optical computing.

Significance of the research

In slow light, a propagating light pulse is substantially slowed down, compared with the velocity of light in a vacuum. This is accomplished by the light’s interaction with the medium through which it is shining. Slow light has potential applications in telecommunications because it could lead to a more orderly traffic flow in networks.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image