A Path Toward More Powerful Tabletop Accelerators

Laser light needn’t be as precise as previously thought to drive new breed of miniature particle accelerators, say Berkeley Lab researchers.

Written byLawrence Berkeley National Laboratory
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

Making a tabletop particle accelerator just got easier. A new study shows that certain requirements for the lasers used in an emerging type of small-area particle accelerator can be significantly relaxed. Researchers hope the finding could bring about a new era of accelerators that would need just a few meters to bring particles to great speeds, rather than the many kilometers required of traditional accelerators. The research, from scientists at the U.S. Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab), is presented as the cover story in the May special issue of Physics of Plasmas.

Traditional accelerators, like the Large Hadron Collider where the Higgs boson was recently discovered, rely on high-power radio-frequency waves to energize electrons. The new type of accelerator, known as a laser-plasma accelerator, uses pulses of laser light that blast through a soup of charged particles known as a plasma; the resulting plasma motion, which resemble waves in water, accelerates electrons riding atop the waves to high speeds.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image