How it Works: Accurate Shearing of Chromosomal DNA

All contemporary, as well as NextGen and Third Generation sequencing methodologies are dependent on the generation of DNA fragments from initial MegaBase long chromosomal DNA molecules. General requirements are that such fragments have to be random and of similar size.

Written byDigilab
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

Problem: All contemporary, as well as NextGen and Third Generation sequencing methodologies are dependent on the generation of DNA fragments from initial MegaBase long chromosomal DNA molecules. General requirements are that such fragments have to be random and of similar size. Many methods of DNA fragmentation have been developed. Most of these methods include limitations and difficulties including high costs, fragmentation, broad fragment size distribution, or irreversible damage in DNA fragments. In addition, the results can become concentration dependent and/or not highly reproducible.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image