Atomic-Scale Investigations Solve Key Puzzle of LED Efficiency

MIT and Brookhaven Lab scientists use electron microscopy imaging techniques to settle a solid-state controversy and raise new experimental possibilities.

Written byBrookhaven National Laboratory
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

MIT and Brookhaven Lab scientists use electron microscopy imaging techniques to settle a solid-state controversy and raise new experimental possibilities

UPTON, NY—From the high-resolution glow of flat screen televisions to light bulbs that last for years, light-emitting diodes (LEDs) continue to transform technology. The celebrated efficiency and versatility of LEDs—and other solid-state technologies including laser diodes and solar photovoltaics—make them increasingly popular. Their full potential, however, remains untapped, in part because the semiconductor alloys that make these devices work continue to puzzle scientists.

A contentious controversy surrounds the high intensity of one leading LED semiconductor—indium gallium nitride (InGaN)—with experts split on whether or not indium-rich clusters within the material provide the LED's remarkable efficiency. Now, researchers from the Massachusetts Institute of Technology (MIT) and the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have demonstrated definitively that clustering is not the source. The results—published online May 16 in Applied Physics Letters—advance fundamental understanding of LED technology and open new research pathways.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image