Bio-Inspired ‘Nano-Cocoons’ Offer Targeted Drug Delivery Against Cancer Cells

Biomedical engineering researchers have developed a drug delivery system consisting of nanoscale “cocoons” made of DNA that target cancer cells and trick the cells into absorbing the cocoon before unleashing anticancer drugs. The work was done by researchers at North Carolina State University and the University of North Carolina at Chapel Hill.

Written byNorth Carolina State University
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

This image illustrates how the nano-cocoon system works. Courtesy of Zhen Gu“This drug delivery system is DNA-based, which means it is biocompatible and less toxic to patients than systems that use synthetic materials,” says Dr. Zhen Gu, senior author of a paper on the work and an assistant professor in the joint biomedical engineering program at NC State and UNC Chapel Hill.

“This technique also specifically targets cancer cells, can carry a large drug load and releases the drugs very quickly once inside the cancer cell,” Gu says.

The nano-cocoon has ligands on its surface that bind to receptors on the surface of cancer cells. Courtesy of Zhen Gu“In addition, because we used self-assembling DNA techniques, it is relatively easy to manufacture,” says Wujin Sun, lead author of the paper and a Ph.D. student in Gu’s lab.

Each nano-cocoon is made of a single strand of DNA that self-assembles into what looks like a cocoon, or ball of yarn, that measures 150 nanometers across.

Lab manager academy logo

Lab Management program and earn CEUs.

Lab Management Certificate

The core of the nano-cocoon contains the anticancer drug doxorubicin (DOX) and a protein called DNase. The DNase, an enzyme that would normally cut up the DNA cocoon, is coated in a thin polymer that traps the DNase like a sword in a sheath.

The surface of the nano-cocoon is studded with folic acid ligands. When the nano-cocoon encounters a cancer cell, the ligands bind the nano-cocoon to receptors on the surface of the cell – causing the cell to suck in the nano-cocoon.

Once inside the cancer cell, the cell’s acidic environment destroys the polymer sheath containing the DNase. Freed from its sheath, the DNase rapidly slices through the DNA cocoon, spilling DOX into the cancer cell and killing it.

“We’re preparing to launch preclinical testing now,” Gu says. “We’re very excited about this system and think it holds promise for delivering a variety of drugs targeting cancer and other diseases.”

Interested in life sciences?

Subscribe to our free Life Sciences Newsletter.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

The paper, “Cocoon-Like Self-Degradable DNA-Nanoclew for Anticancer Drug Delivery,” was published online Oct. 13 in the Journal of the American Chemical Society. Co-authors include Yue Lu, a Ph.D. student in Gu’s lab; Margaret Reiff, an undergraduate student in the joint biomedical engineering department; Tianyue Jiang, a Ph.D. student in the joint biomedical engineering department and at the China Pharmaceutical University; and Dr. Ran Mo, a former postdoctoral researcher in the joint biomedical engineering department now at the China Pharmaceutical University.

This research was supported by the North Carolina Translational and Clinical Sciences Institute under grant number 1UL1TR001111 and with funding from NC State and UNC Chapel Hill.

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - April 2025

Sustainable Laboratory Practices

Certifications and strategies for going green

Lab Manager April 2025 Cover Image