Bio-Inspired Robotic Finger Looks, Feels and Works Like the Real Thing

Because of its light weight, dexterity and strength, robotic design offers advantages over traditional mechanisms

Written byFlorida Atlantic University
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

Most robotic parts used today are rigid, have a limited range of motion and don't really look lifelike. Inspired by both nature and biology, a scientist from Florida Atlantic University has designed a novel robotic finger that looks and feels like the real thing. In an article recently published in the journal Bioinspiration & Biomimetics, Erik Engeberg, PhD, assistant professor in the Department of Ocean and Mechanical Engineering within the College of Engineering and Computer Science at FAU, describes how he has developed and tested this robotic finger using shape memory alloy (SMA), a 3D CAD model of a human finger, a 3D printer, and a unique thermal training technique.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image