Biosecurity Regulations

By most accounts, America's biosecurity culture remains a work in progress as scientists adapt to new regulatory performance standards and policy makers grapple with the emerging tensions between the new regulations and the best interests of scientific research.

Written byF. Key Kidder
| 7 min read
Register for free to listen to this article
Listen with Speechify
0:00
7:00

Are They Working and What are the Compliance Challenges for Lab Managers?

“The threat posed by biological agents employed in a terrorist attack on the United States is arguably the most important homeland security challenge of our era. Whether natural pathogens are cultured or new variants are bioengineered, the consequence of a terrorist-induced pandemic could be millions of casualties— far more than we would expect from nuclear terrorism, chemical attacks or conventional attacks on the infrastructure of the United States such as the attacks of September 11, 2001. Even if there were fewer casualties, additional second-order consequences (including psychological, social and economic effects) would dramatically compound the effects. Bioengineering is no longer the exclusive purview of state sponsors of terrorism; this technology is now available to small terrorist groups and even to deranged individuals.” – DHS Biological Threat Risk Assessment: A Call for Change, National Research Council, 2008

The debris from the 2001 terrorist attacks on the Twin Towers still lay smoldering in Manhattan as the first volley of anthrax-laced letters were dropped into a New Jersey mailbox.

Within weeks, the diffuse concept of bioweaponry of mass destruction had coalesced into a clear and present danger. A new biosecurity regime was soon imposed on America’s scientific community. In June 2002, the Public Health Security and Bioterrorism Preparedness and Response Act was signed into law, expanding government oversight over certain select agents toxic to humans, animals and plants. The intent of the legislation was to fortify national surveillance, prevention, control and response systems in labs containing these agents, and so thwart the malicious use of pathogens that could be converted into bioweapons. Of the 73 agents on the list, 13 are found naturally in the U.S. Many of the select viruses, bacteria, toxins and rickettsia (including anthrax) on the list—including the stuff of disaster responders’ worst nightmares, like Ebola, smallpox and the reconstructed 1918 pandemic viruses—fell under the existing select agent rule prior to 9/11; the rule’s regulatory framework governed lab operations through an overlay of biosafety levels (BSLs), starting with BSL-1 and rising to BSL-4 for labs housing the most toxic agents.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

About the Author

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image