Building Transparency— A Bottom-Up View

How strategically integrating informatics tools across a drug discovery workflow can improve transparency, trust and productivity.

Written byMark J. Hayward,Romel Campbell,Qing Ping Han, andChi Zhang
| 7 min read
Register for free to listen to this article
Listen with Speechify
0:00
7:00

This is Part II of a two-part series.

The goal of an informatics project implemented in the drug discovery analytical group at Lundbeck Research was to gain efficiencies and productivity by increasing transparency, improving data quality, and building trust. A willingness to embrace transparency is critical to the success of an organization, and an open environment in which data are readily shared and reviewed and in which the quality of the science is of utmost importance nurtures a corporate culture built on transparency and trust. Part I of this article (Lab Manager Magazine, June 2012, “Building Transparency— A Top-Down View”) presented the underlying principles and main objectives of this project. Part II describes the selection and implementation of software tools, their integration into an efficient and effective informatics network, and the outcomes and lessons learned.

The overall objective of this project was to gain efficiency by linking analytical data to chemistry and biology via electronic laboratory notebook (ELN) systems while they were in the process of being deployed. The vision was to create bidirectional pipelines for analytical data to flow to/from the ELN and proprietary corporate compound/ pharmacology databases and to have these pipelines in place before deployment of the ELN. The project also provided an opportunity to improve data organization, workflow efficiency, and transparency.

Real-world implementation

The drug discovery analytical group at Lundbeck employs multiple tools and methods to determine the composition, structure, and purity of drug compounds; measure physico-chemical/ADME properties; perform mechanistic and other complex bioanalyses; and evaluate the solubility, stability, and other characteristics of drug compounds in various formulations. These functions encompass a broad range of analytical techniques, including liquid chromatography/mass spectrometry (LC-MS), supercritical fluid chromatography (SFC)/MS, gas chromatography (GC)/MS, MS-MS, automated pH (pKa)/Karl Fischer (water content) titration, and nuclear magnetic resonance (NMR). At Lundbeck, these analytical systems feed data into three main informatics platforms: Empower, used mainly for quantitative analysis and LC peak integration; MassLynx, for applications related to mass spectrometry; and NuGenesis® Scientific Data Management System (SDMS), which makes data readily viewable and was the conduit for transferring data from multiple instruments to the ELN.

Using only native software capabilities

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image