Cells Prefer Nanodiscs Over Nanorods

For years scientists have been working to fundamentally understand how nanoparticles move throughout the human body. One big unanswered question is how the shape of nanoparticles affects their entry into cells. Now researchers have discovered that under typical culture conditions, mammalian cells prefer disc-shaped nanoparticles over those shaped like rods.

Written byGeorgia Institute of Technology
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

For years scientists have been working to fundamentally understand how nanoparticles move throughout the human body. One big unanswered question is how the shape of nanoparticles affects their entry into cells. Now researchers have discovered that under typical culture conditions, mammalian cells prefer disc-shaped nanoparticles over those shaped like rods.

Understanding how the shape of nanoparticles affects their transport into cells could be a major boost for the field of nanomedicine by helping scientists to design better therapies for various diseases, such as improving the efficacy and reducing side effects of cancer drugs.

In addition to nanoparticle geometry, the researchers also discovered that different types of cells have different mechanisms to pull in nanoparticles of different sizes, which was previously unknown. The research team also used theoretical models to identify the physical parameters that cells use when taking in nanoparticles.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.
Add Lab Manager as a preferred source on Google

Add Lab Manager as a preferred Google source to see more of our trusted coverage.

Related Topics

CURRENT ISSUE - January/February 2026

How to Build Trust Into Every Lab Result

Applying the Six Cs Helps Labs Deliver Results Stakeholders Can Rely On

Lab Manager January/February 2026 Cover Image