Chemists Achieve New Technique with Profound Implications for Drug Development

Method expands options for making pure batches of ‘one-handed’ molecules.

Written byThe Scripps Research Institute
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

LA JOLLA, CA – October 23, 2014 – Breaking carbon-hydrogen (C-H) bonds to alter existing molecules to create new ones is an increasingly important avenue for drug development. Of particular interest is mirror-image or “one-handed” compounds, but C-H breaking methods for making pure batches of these molecules have worked with only a limited range of starting materials.

Now a team from The Scripps Research Institute (TSRI) has established a new C-H activation technique that opens the door to creating a broader range of pure molecules of one-handedness or “chirality” by eliminating previous starting-material limitations.

“This opens a new avenue to create chirally pure molecules for drug discovery,” said Jin-Quan Yu, who is Frank and Bertha Hupp Professor of Chemistry at TSRI. “The potential may be huge.”

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image