Chirping Electrons: Cyclotron Radiation from Single Electrons Measured Directly for First Time

Method has potential to measure neutrino mass and look beyond the Standard Model of the universe.

Written byPacific Northwest National Laboratory
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

RICHLAND, Wash. – A year before Albert Einstein came up with the special theory of relativity, or E=mc2, physicists predicted the existence of something else: cyclotron radiation. Scientists predicted this radiation to be given off by electrons whirling around in a circle while trapped in a magnetic field. Over the last century, scientists have observed this radiation from large ensembles of electrons but never from individual ones.

Until now.

A group of almost 30 scientists and engineers from six research institutions reported the direct detection of cyclotron radiation from individual electrons April 20 in Physical Review Letters. They used a specially developed spectroscopic method that allowed them to measure the energy of electrons, one single electron at a time.

Besides the excitement of actually detecting this radiation from a single fundamental charged particle — the electron — the method provides a new way to potentially measure the mass of the neutrino, a subatomic particle that weighs at most two-billionths of a proton.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image