Labmanager Logo
3D render of many blue cells floating against a gray background

iStock, Pobytov

Controlling Mouse Cells to Engineer Tissues

Biologists discover that cell density can be used to control how mouse cells pattern themselves into complex structures

| 3 min read
Share this Article
Register for free to listen to this article
Listen with Speechify
0:00
3:00

Genes aren't the sole driver instructing cells to build multicellular structures, tissues, and organs. In a new paper published in Nature Communications, USC Stem Cell scientist Leonardo Morsut and Caltech computational biologist Matt Thomson characterize the influence of another important developmental driver: cell density, or how loosely or tightly cells are packed into a given space. In both computational models and laboratory experiments, the team of scientists used cell density as an effective tool for controlling how mouse cells pattern themselves into complex structures.

"This paper represents progress towards our big picture goal of engineering synthetic tissues," said Morsut, an assistant professor of stem cell biology and regenerative medicine, and biomedical engineering at the Keck School of Medicine of USC. "Synthetic tissues could have endless medical applications, ranging from testing potential drugs or therapies to providing grafts or transplants for patients."

Lab manager academy logo

Get training in Lab Crisis Preparation and earn CEUs.

One of over 25 IACET-accredited courses in the Academy.

Certification logo

Lab Crisis Preparation course

The study used two types of mouse cells -- connective tissue cells and stem cells -- engineered to carry a synthetic cellular communication system or "genetic circuit." This circuit is based on something Morsut developed called "synNotch," which is a protein that scientists genetically engineer into a cell to serve as a "sensor." Located on a cell's surface, this protein-based sensor recognizes an external signal that triggers the cell to respond -- usually by turning on a user-defined gene.

For this particular series of experiments, the scientists used synNotch to turn on a circuit that includes green fluorescence and a way to propagate the signal further -- although it could be used to turn on any gene. The fluorescence made it easy to observe cells as they formed patterns. For example, in a field of cells, the scientists could create a pattern of green fluorescent rings emanating from a central point.

Unexpected discovery

While conducting these experiments, co-first author Marco Santorelli, a postdoc in the Morsut Lab, noticed that genetically identical cells did not always produce the same patterns.

"We would see different outcomes of the patterning when we would start with genetically identical cells in different numbers," said Morsut. "So that was puzzling at the beginning. I remember Marco came in and told me once that the experiment worked, but only in half of the plate. And when we looked at it more carefully, we started seeing that there was a gradient of cell density that seemed to correlate with differences in patterning."

Interested in Life Science News?

Subscribe to our free Life Science Tools & Techniques newsletter.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

Above a certain cell density, synNotch exerted a weaker effect and didn't produce the same patterns. Further complicating matters, cell density constantly shifted as cells proliferated at ever changing rates -- interacting in complex ways with the synNotch genetic circuit.

Does it compute?

Co-first author Pranav S. Bhamidipati, a candidate in the USC-Caltech MD-PhD program who was a member of both the Morsut and Thomson labs, became interested in building a computational model that could predict and clarify this complex and dynamic cell behavior.

"For me, this was one of the first times in my life where computational modeling has been able to predict behaviors that look like what actually happens in the cells," said Thomson, who is an assistant professor of computational biology at Caltech and an investigator with the Heritage Medical Research Institute. "Here, it helped guide us to think about how the cell density, proliferation rate, signaling, and all these different things conspire."

Morsut added: "We were happy that we had the computational model to really explore and get a sense of what are the possible different patterns, and how to move from one to another."

Guided by the computational model, the scientists were able to use cell density to generate a variety of predictable fluorescent patterns that developed over specific timeframes.

It's okay be a little dense

To understand how cell density was exerting these effects, co-first author Josquin Courte, a postdoc in the Morsut Lab, conducted a series of experiments that yielded a surprising discovery. Greater cell density induces stress that leads to a quicker breakdown of not only synNotch in particular, but also cell surface sensors in general.

This means that cell density is a broadly applicable tool for guiding both engineered and naturally occurring cells to build a vast array of structures, tissues, and organs.

"Nature has relied on cell density in conjunction with genetic circuits to generate the remarkable diversity of multicellular structures, tissues, and organs," said Morsut. "Now we can co-opt this same strategy to advance our efforts to build synthetic multicellular structures -- and eventually tissues and organs -- for regenerative medicine."

-Note: This news release was originally written by Cristy Lytal and was published by the Keck School of Medicine of USC. As it has been republished, it may deviate from our style guide.

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - December 2024

2025 Industry and Equipment Trends

Purchasing trends survey results

Lab Manager December 2024 Cover Image
Lab Manager Life Science eNewsletter

Stay Connected with Life Science News

Click below to subscribe to Life Science Tools & Techniques eNewsletter!

Subscribe Today