Cryopreservation

The cooling and subsequent storage of frozen cells is a vital step in providing a continuous source of tissue and genetically stable living cells for procedures such as bone marrow transplant, IVF, and organ donation. Cryopreservation works by inhibiting all biochemical activity.

Written byKen Vanoster
| 6 min read
Register for free to listen to this article
Listen with Speechify
0:00
6:00

The Greener Option

The cooling and subsequent storage of frozen cells is a vital step in providing a continuous source of tissue and genetically stable living cells for procedures such as bone marrow transplant, IVF, and organ donation. Cryopreservation works by inhibiting all biochemical activity, including apoptotic chemical reactions, to prevent any damaging cell deterioration. Various cell types can therefore be effectively preserved, although cell damage during the freezing process must also be minimized in order to maintain viability upon thawing.

As a major component of all living cells, water must be present for most chemical reactions to occur effectively. Consequently, the extent of freezing damage is extremely dependent upon the amount of free water within the living cells. During freezing, cellular metabolism is halted and, as ice forms in the extracellular environment, an osmotic imbalance is created, causing water to move out of the cell. As a result, cellular dehydration and shrinkage can occur. There are a number of ways in which these detrimental effects can be minimized, such as effectively using cryoprotective agents, using an appropriate controlled-rate freezer to control the cooling rate, maintaining an appropriate storage temperature, and controlling the thawing rate.

Maintaining cell viability

Cryoprotective agents, such as glycerol or dimethyl sulphoxide (DMSO), can be used to prevent the formation of ice both within the cell and in the extracellular environment. These agents protect slowly frozen cells via a range of different mechanisms. These include suppressing high salt concentrations to reduce cell shrinkage at a given temperature, reducing the fraction of the solution frozen, and minimizing intracellular ice formation. There are two types of cryoprotectants available, one that acts intracellularly and one that acts extracellularly. Intracellular cryoprotectants permeate the cell membrane to effectively minimize cell damage, whereas extracellular cryoprotectants work by inducing vitrification (the solidification of water due to increased viscosity rather than crystallization), which does not have the same biologically damaging effects as freezing.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

About the Author

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image