Do Cheaters Have an Evolutionary Advantage?

In social amoebae, genes for cooperation and for cheating have reached a stalemate.

Written byWashington University in St. Louis
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

Anyone who has crawled along in the left lane while other drivers raced up the right lane, which was clearly marked “lane ends, merge left,” has experienced social cheating, a maddening and fascinating behavior common to many species.

Although it won’t help with road rage, scientists are beginning to understand cheating in simpler “model systems,” such as the social amoeba, Dictyostelium discoideum.

At one stage in their life cycle thousands of the normally solitary Dicty converge to form a multicellular slug and then a fruiting body, consisting of a stalk holding aloft a ball of spores. It is during this cooperative act that the opportunity for cheating arises.

Some amoebae ultimately become cells in the stalk of the fruiting body and die, while others rise to the top, and form spores that pass their genes to the next generation. When unrelated amoebae gather to form a fruiting body, some strains may overcontribute to the spores and undercontribute to the stalk. These are the cheaters.

Scientists knew that cheaters could be found in wild populations of Dicty, but whether this was a successful strategy in the game of natural selection was anyone’s guess. 

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image