Dopants Dramatically Alter Electronic Structure of Superconductor

Findings explain unusual properties, but complicate search for universal theory.

Written byBrookhaven National Laboratory
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

Findings explain unusual properties, but complicate search for universal theory

UPTON, NY — Over the last quarter century, scientists have discovered a handful of materials that can be converted from magnetic insulators or metals into “superconductors” able to carry electrical current with no energy loss—an enormously promising idea for new types of zero-resistance electronics and energy-storage and transmission systems. At present, a key step to achieving superconductivity (in addition to keeping the materials very cold) is to substitute a different kind of atom into some positions of the “parent” material’s crystal framework. Until now, scientists thought this process, called doping, simply added more electrons or other charge carriers, thereby rendering the electronic environment more conducive to the formation of electron pairs that could move with no energy loss if the material is held at a certain chilly temperature.

Now, new studies of an iron-based superconductor by an international team of scientists—including physicists from the U.S. Department of Energy’s Brookhaven National Laboratory and Cornell University—suggest that the story is somewhat more complicated. Their research, published online in Nature Physics February 17, 2013,* demonstrates that doping, in addition to adding electrons, dramatically alters the atomic-scale electronic structure of the parent material, with important consequences for the behavior of the current-carrying electrons.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image