Energy Retrofit

A laboratory energy retrofit process begins with an energy audit in which all aspects of a buildings energy usage are examined in order to identify opportunities for savings.

Written byBryon Krug andPatrick Woods
| 7 min read
Register for free to listen to this article
Listen with Speechify
0:00
7:00

Labs Now Have Greater Opportunities to Improve Sustainability, Reduce Their Carbon Footprint, and Reduce Energy Spending

Existing laboratories, whether built decades ago with now-outdated equipment or more recently with state-ofthe- art technology, provide significant opportunities to reduce energy consumption, improve sustainability, and manage costs. Typical laboratory facilities are extremely energy intensive. Research by the U.S. Department of Energy suggests that energy consumption per square foot in laboratories is on average five to ten times higher than the energy consumption in standard commercial office buildings. Certain specialty laboratories can consume as much as 100 times the energy of similarly sized commercial facilities. Fortunately, laboratories have the potential for dramatic energy savings, which can be realized through cost-effective energy retrofits at no upfront cost to the laboratory owner.

While laboratories offer distinct challenges specific to their unique health and safety requirements, the basic process and principles that are used to improve energy consumption patterns across standard building types are the same. The energy retrofit process begins with an energy audit in which all aspects of a buildings energy usage are examined in order to identify opportunities for savings. The energy audit focuses on the equipment and systems that contribute most heavily to the buildings energy profile. For a laboratory, significant energy consumption can be traced to mechanical systems, lighting systems, and plug-load equipment.


Energy performance contracting (EPC) allows facilities to complete energy and water efficiency projects without incurring upfront capital costs.

Mechanical systems

Cooling, heating, and ventilation systems are generally the largest consumers of energy within a laboratory, in part because laboratory air-quality requirements greatly exceed the requirements of commercial buildings. While the standard office building is designed for one or fewer air changes per hour (ACH)meaning that fresh outside air is cycled through the building once every hour or less frequentlylaboratories are often designed for ventilation rates between 6 and 20 ACH. These air exchanges typically occur 24 hours per day, seven days per week, regardless of laboratory usage.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image