Energy-Saving Exhaust Systems

An energy savings of 15 percent or more is available through the use of VAV laboratory exhaust ventilation systems. When properly designed, a VAV system can provide these savings without adversely impacting the air quality at downwind air intake locations or sensitive locations.

Written byBrad C. Cochran andJeff D. Reifschneider
| 9 min read
Register for free to listen to this article
Listen with Speechify
0:00
9:00

Exhaust Ventilation Systems Can Now Be Designed to Optimize Energy Consumption by Employing VAV Technology

In this day and age, there is a tremendous emphasis on energy conservation. Individuals talk about various ways to save energy (turning off lights, riding a bicycle, etc.), yet there is a huge amount of unrealized energy savings available in our nation’s research and teaching laboratories. A typical laboratory consumes up to 10 times the energy per square foot of an office building, while specialized laboratories may consume up to 100 times more energy.1 Due to the requirements for high air-change rates of 100 percent fresh air, a high percentage of this energy usage (up to 80 percent) is associated with the ventilation system. The ventilation of a laboratory can be broken down into three systems: the fresh air supply system, conditioning (temperature, humidity, filtration, etc.), and the exhaust system.

The fresh air and conditioning systems account for approximately 60 percent of the ventilation system energy consumption and have been the focus of laboratory designers for the past several decades. Variable air volume (VAV) air-handler units have become the norm in laboratory design to minimize airflow to match the building’s ventilation demands, which can vary throughout the day depending on the laboratory occupancy and the fume hood activity (when VAV fume hoods are installed). Heat recovery systems have also become the norm, particularly in northern climates, to reduce the energy consumption of the conditioning systems.

The exhaust system, which accounts for the other 40 percent of the ventilation system’s energy consumption, has often been overlooked when considering energy-saving strategies, even though it may account for about 30 percent of the laboratory building’s total energy consumption. The conventional wisdom has been that the exhaust system must operate at full load conditions 24 hours per day, 365 days per year.

This article will address three strategies that can be employed either during the design of a new laboratory or during the renovation of an existing laboratory to safely reduce the energy consumption of the exhaust system by at least 50 percent, which equates to a 15 percent reduction in the laboratory’s total energy use. To put this into perspective, using statistics provided by Laboratories for the 21st Century1, if half of all American laboratories reduced their energy consumption by 15 percent, this would result in an annual energy reduction of 42 trillion British thermal units. This is equivalent to the energy consumed by 420,000 households, $625 million, 9.5 million fewer tons of carbon dioxide emitted, removing 650,000 cars from U.S. highways, or saving 28 million trees from harvest.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image