Flawed Diamonds Promise Sensory Perfection

Berkeley Lab researchers and their colleagues extend electron spin in diamond for incredibly tiny magnetic detectors.

Written byLawrence Berkeley National Laboratory
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

Berkeley Lab researchers and their colleagues extend electron spin in diamond for incredibly tiny magnetic detectors

From brain to heart to stomach, the bodies of humans and animals generate weak magnetic fields that a supersensitive detector could use to pinpoint illnesses, trace drugs – and maybe even read minds. Sensors no bigger than a thumbnail could map gas deposits underground, analyze chemicals, and pinpoint explosives that hide from other probes.

Now scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley, working with colleagues from Harvard University, have improved the performance of one of the most potent possible sensors of magnetic fields on the nanoscale – a diamond defect no bigger than a pair of atoms, called a nitrogen vacancy (NV) center.

The research team’s discoveries may eventually enable clocks smaller than computer chips yet accurate to within a few quadrillionths of a second, or rotational sensors quicker and more tolerant of extreme temperatures than the gyroscopes in smart phones. Before long, an inexpensive chip of diamond may be able to house a quantum computer. The team reports their results in Nature Communications.

A sensor made of diamond

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image