Football Displays Fractal Dynamics

Physicists reveal that the real-time dynamics in a football game are subject to self-similarity characteristics in keeping with the laws of physics

Written bySpringer
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

Football fascinates millions of fans, almost all of them unaware that the game is subject to the laws of physics. Despite their seemingly arbitrary decisions, players obey certain rules, as they constantly adjust their positions in relation to their teammates, opponents, the ball and the goal. A team of Japanese scientists has now analysed the time-dependent fluctuation of both the ball and all players’ positions throughout an entire match. They discovered that a simple rule governs the complex dynamics of the ball and the team’s front-line. These findings, published in EPJ B, could have implications for other ball games, providing a new perspective on sports science.

The authors considered two scenarios of previous football matches. Namely, they focused on a quarter-final game in the 2008 FIFA Club World Cup and a regular game in the 2011 Japanese soccer league. Using a digital video camera, they then recorded the time fluctuation in the positions of all players and the ball.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image