High Purity Water for Inorganic Analysis

Various possibilities exist to address the specific water purity requirements of each laboratory and field, some of these solutions are in relationship to the needs of various laboratories.

Written byStéphane Mabic, PhD
| 6 min read
Register for free to listen to this article
Listen with Speechify
0:00
6:00

Environmental analysis, microelectronics, material chemistry, and clinical analysis all involve or rely on metal and ion analyses. However, the analytical laboratories in these fields are not all equipped with the same instruments and do not pursue the same analyses. Therefore, a variety of analytical tools and techniques are utilized for measuring various matrices at different concentrations and throughput. Due to the diversity of sample types, the analytical methods differ by the required sensitivity and sample preparation steps.

Purified water in the analytical process

Analytical methods may be divided into those employing water during the actual analysis phase (liquid chromatography-based techniques) and those without water during the analysis step (spectrometric and spectrophotometric techniques – ICP-OES, ICP-MS, and AA). In both cases, water is, or can be, used for sample preparation, standard dilution, blanking, and instrument rinsing (Figure 1). The amount of water added is so important that the presence of any water contaminants may generate interference in the detection range of the sample. In addition, water is the major component of mobile phases and buffers for liquid chromatography techniques (e.g., IC, IC-MS, and CE).

Water quality requirements

Since all the aforementioned techniques measure levels of inorganic analytes, it is important to select water with a high ionic purity. Resistivity has traditionally been a useful parameter to monitor the overall ionic purity of the water and is the basis to distinguish various water quality grades in norms, standards, and guidelines. The resistivity value is based on the sum of the contribution (concentration, valence, and mobility) of each ion present in the water. As the mobility is temperature-dependent, the resistivity value usually is given together with a temperature value. The maximum resistivity value of pure water, arising from water dissociation, is 18.2 Mω·cm at 25 °C.1 This value ensures that the overall concentration of ions is below 1 ppb (1μg/L), in Type-I water.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image