Labmanager Logo
The AI model developed estimated lung function by observing the radiographs, with lower values denoted by blue areas and higher values by red areas in the saliency maps.

Osaka Metropolitan University

Highly Accurate AI Model Can Estimate Lung Function Just by Using Chest X-rays

Potential benefits of this innovative method include subjecting patients to fewer exams and reducing health care costs

| 2 min read
Share this Article
Register for free to listen to this article
Listen with Speechify
0:00
2:00

If there is one medical exam that everyone in the world has taken, it’s a chest x-ray. Clinicians can use radiographs to tell if someone has tuberculosis, lung cancer, or other diseases, but they can’t use them to tell if the lungs are functioning well.

Until now, that is.

Lab manager academy logo

Get training in Radiation Health and Safety and earn CEUs.

One of over 25 IACET-accredited courses in the Academy.

Certification logo

Radiation Health and Safety course

In findings published in The Lancet Digital Health, a research group led by Associate Professor Daiju Ueda and Professor Yukio Miki at Osaka Metropolitan University’s Graduate School of Medicine has developed an artificial intelligence model that can estimate lung function from chest radiographs with high accuracy.

Conventionally, lung function is measured using a spirometer, which requires the cooperation of the patient, who is given specific instructions on how to inhale and exhale into the instrument. Accurate evaluation of the measurements is difficult if the patient has a hard time following instructions, which can occur with infants or persons with dementia, or if the person is prone.

Professor Ueda and the research group trained, validated, and tested the AI model using over 140,000 chest radiographs from a nearly 20-year period. They compared the actual spirometric data to the AI model’s estimates to fine-tune its performance. The results showed a remarkably high agreement rate, with a Pearson’s correlation coefficient (r) of more than 0.90, indicating that the method is sufficiently promising for practical use.

The AI model developed in this study has the potential to expand the options for pulmonary function assessment for patients who have difficulty performing spirometry.

“Highly significant is the fact that just by using the static information from chest x-rays, our method suggests the possibility of accurately estimating lung function, which is normally evaluated through tests requiring the patients to exert physical energy,” Professor Ueda explained. “This AI model was built through the cooperation of many people, from physicians, researchers, and technicians to patients at several institutions. If it can help lessen the burden on patients while also reducing medical costs, that would be a wonderful thing.”

Interested in Biopharma News?

Subscribe to our free Biopharma Tools and Techniques newsletter.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

- This press release was originally published on the Osaka Metropolitan University website and has been edited for style and clarity

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - December 2024

2025 Industry and Equipment Trends

Purchasing trends survey results

Lab Manager December 2024 Cover Image
Lab Manager Biopharma eNewsletter

Stay Connected with Biopharma News

Click below to subscribe to Biopharma Tools and Techniques eNewsletter!

Subscribe Today