How hTERT-Immortalized Cell Lines Work

Choosing an in vitro model system that faithfully represents the natural physiology of the cell being studied is fundamental to understanding its in vivo function. Cultures of primary cell isolates retain their physiology and karyotype after isolation, but cultures may be difficult to prepare and are susceptible to contamination.

Written byATCC - American Type Culture Collection
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

Problem: Choosing an in vitro model system that faithfully represents the natural physiology of the cell being studied is fundamental to understanding its in vivo function. Cultures of primary cell isolates retain their physiology and karyotype after isolation, but cultures may be difficult to prepare and are susceptible to contamination. More importantly, primary cells, with few exceptions, do not express telomerase. Without telomerase to maintain them, the telomere ends of the chromosomes shorten with each cell division, leading to telomere-induced replicative senescence. Thus, although primary cells are good models of cellular physiology, they become senescent in vitro before they can be expanded to provide the number of cells needed for biochemical or genetic assays.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image