Hugging Hemes Help Electrons Hop

Novel biological mechanism relays electrons in proteins in mineral-breathing bacteria important for energy-related research.

Written byPacific Northwest National Laboratory
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

RICHLAND, Wash. – Researchers simulating how certain bacteria run electrical current through tiny molecular wires have discovered a secret Nature uses for electron travel. The results are key to understanding how the bacteria do chemistry in the ground, and will help researchers use them in microbial fuel cells, batteries, or for turning waste into electricity.

Within the bacteria's protein-based wire, molecular groups called hemes communicate with each other to allow electrons to hop along the chain like stepping stones. The researchers found that evolution has set the protein up so that, generally, when the electron's drive to hop is high, the heme stepping stones are less tightly connected, like being farther apart; when the drive to hop is low, the hemes are more closely connected, like being closer together. The outcome is an even electron flow along the wire.

This is the first time scientists have seen this evolutionary design principle for electron transport, the researchers reported Jan. 2 in Proceedings of the National Academy of Sciences Early Edition Online.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image