In Human Clinical Trial, UAB to Test Drug Shown to Completely Reverse Diabetes in Human Islets, Mice

New research conducted at the University of Alabama at Birmingham has shown that the common blood pressure drug verapamil completely reverses diabetes in animal models. Now, thanks to a three-year, $2.1 million grant from the JDRF, UAB researchers will begin conducting a potentially groundbreaking clinical trial in 2015 to see if it can do the same in humans.

Written byTyler Greer-University of Alabama at Birmingham News Office
| 6 min read
Register for free to listen to this article
Listen with Speechify
0:00
6:00
The trial, known as “the repurposing of verapamil as a beta cell survival therapy in type 1 diabetes,” is scheduled to begin early next year and has come to fruition after more than a decade of research efforts in UAB’s Comprehensive Diabetes Center.

The trial will test an approach different from any current diabetes treatment by focusing on promoting specialized cells in the pancreas called beta cells, which produce insulin the body needs to control blood sugar. UAB scientists have proved through years of research that high blood sugar causes the body to overproduce a protein called TXNIP, which is increased within the beta cells in response to diabetes, but had never previously been known to be important in beta cell biology. Too much TXNIP in the pancreatic beta cells leads to their deaths and thwarts the body’s efforts to produce insulin, thereby contributing to the progression of diabetes.

But UAB scientists have also uncovered that the drug verapamil, which is widely used to treat high blood pressure, irregular heartbeat and migraine headaches, can lower TXNIP levels in these beta cells — to the point that, when mouse models with established diabetes and blood sugars above 300 milligrams per deciliter were treated with verapamil, the disease was eradicated.

“We have previously shown that verapamil can prevent diabetes and even reverse the disease in mouse models and reduce TXNIP in human islet beta cells, suggesting that it may have beneficial effects in humans as well,” said Anath Shalev, M.D., director of UAB’s Comprehensive Diabetes Center and principal investigator of the verapamil clinical trial. “That is a proof-of-concept that, by lowering TXNIP, even in the context of the worst diabetes, we have beneficial effects. And all of this addresses the main underlying cause of the disease — beta cell loss. Our current approach attempts to target this loss by promoting the patient’s own beta cell mass and insulin production. There is currently no treatment available that targets diabetes in this way.”

Shalev says replacing this beta cell mass by transplantation has proved more difficult and problematic than initially thought, but creating an environment that would enable beta cells to survive and possibly regenerate or become functional again does provide an attractive alternative by increasing the body’s own beta cell mass. UAB lab studies have shown verapamil to be extremely effective in this area, which has helped to make this clinical trial — funded by the JDRF, the largest charitable supporter of type 1 diabetes research — a possibility now.
To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image