INSIGHTS on Developing Antibody-Drug Conjugates

INSIGHTS on Developing Antibody-Drug Conjugates

Clinicians and patients alike know that traditional cancer treatments beat up the person as much as the cancer. Success arises only if the treatment kills the cancer before the patient. For decades, researchers sought solutions that attacked only the cancer, not healthy tissue.

Written byMike May, PhD
| 6 min read
Register for free to listen to this article
Listen with Speechify
0:00
6:00

The Promise of Safer and More Effective Cancer Treatments Still Faces Obstacles

In the past few years, some of the most promising and targeted new treatments come from antibody-drug conjugates (ADCs), in which an antibody delivers the drug to specific cancerous cells. Like all medications, though, ADCs have their pros and cons, but this arsenal of cancer treatments keeps expanding.

Nonetheless, ADCs got off to a rocky start as a cancer treatment. In 2001, the US Food and Drug Administration (FDA) approved the first ADC—gemtuzumab ozogamicin, which treated acute myelogenous leukemia— but it was withdrawn from the market in 2010, after a clinical trial showed no improved results in comparison with other treatments. In fact, the trial indicated that more patients on this treatment died. One year later, in 2011, the FDA approved brentuximab vedotin, which treats some forms of lymphoma. Then, in 2013, the FDA approved ado-trastuzumab emtansine for treatment of HER2-positive metastatic breast cancer.

Many more ADCs will probably be approved in the future. As of January 6, 2015, a search of antibody-drug conjugates on ClinicalTrials.gov revealed 222 current trials. To get more of these cancer treatments on the market, though, researchers need to overcome some challenges. Fortunately, new instruments surmount some of the obstacles, and technologies under development promise even more help ahead.

ADC obstacles

Maybe making an ADC sounds simple enough, but in fact, it’s not simple at all. As Bijal D. Shah, director of translational research initiatives in lymphoma and acute lymphoblastic leukemia at the Moffitt Cancer Center in Tampa, Florida, explains: “ADCs require internalization of antibody-antigen for the drug to kill tumor cells.” He adds, “The internalization can vary dramatically depending on the antigen, as well as other treatments that may be given concurrently.”

To know how an ADC might work, researchers must characterize many of its properties, including the drug-antibody ratio (DAR). Nonetheless, Daniel Some, principal scientist at the Wyatt Technology Corporation in Santa Barbara, California, says that it’s difficult to measure the DAR, “which is a critical property that impacts efficacy and dosage.”

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

About the Author

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image