Interpretation of Particle Size Reported by Different Analytical Techniques

More information on particle sizing

Written byLab Manager
| 16 min read
Register for free to listen to this article
Listen with Speechify
0:00
16:00

Introduction

I will begin this article with a pertinent story from my tenure as a mediocre graduate student in Physics. A fellow student and I were working together on a homework set. We had spent the majority of the day on a particularly difficult problem that resulted in a lengthy equation expressed in terms of assorted variables. I turned to the back of the book to compare our result to that of the author's and was astonished by the dissimilarity. I showed the 'correct' solution to my friend, a far better and more confident student than I. After looking at it he asked, "Did we apply the appropriate theorems?" I affirmed that we had. Next, he asked, "Did we make any mathematical errors?" I was confident that we had not. "Then," he proclaimed, "our solution is correct-- we just are expressing it in different terms." 
I recall this incident when I encounter a debate over the 'correctness' of the results obtained for particle size measurements by two or more different analytical techniques. Provided that the instruments used are capable of producing high-quality data, the pertinent questions, then, are, “was the sample properly prepared and properly presented to the instrument,” and “were the analytical parameters applied correctly.” If the answer to both is “yes,” then both analytical results probably are equally correct; they are just expressed in different terms.
If what has been stated thus far has not raised any questions, you probably don’t need to read the rest of this article. This article is intended to resolve questions users often have concerning comparisons of particle sizing results by different techniques. The techniques referenced are sieving, sedimentation, imaging (including microscopy and machine vision), electrozone sensing, and light scattering. The determination of particle size on the same sample by all of these techniques and others not mentioned will, in the majority of cases, yield different results for mean size, modal size, and quantity distribution by size.
From the Basics
The following questions may seem simple, but take a close look at the answers. They often contain conditions and constraints that, if not abided by, will affect the accuracy of reported size data.
What defines or characterizes a “particle” and what limitations does the definition impose on particle sizing?
McGraw Hill’s Dictionary of Scientific and Technical Terms (third edition) (1) defines a particle as “any relatively small subdivision of matter, ranging in diameter from a few angstroms to a few millimeters.” Particles that one wishes to measure for size may be composed of organic or inorganic molecules; they may be molecularly homogeneous or inhomogeneous; they may be in solid or liquid state; they may be isotropic or anisotropic; they may be of any shape; and may be suspended in various media. Molecular structure, homogeneity, state, isotropy, shape, and suspension medium associated with the particles under test all may cause different size measurement devices to respond differently to the same particle. When comparing the results from two different types of sizing instruments, one should know if any characteristic of the particle other than size, or any characteristic of the sample presentation could affect the reported size value. Error from these sources is associated with non-ideal or even inappropriate application of the measuring instrument.
Is there a single, standard definition for “particle size” that can be applied to any particle?
There are many definitions, but none has been adopted as a comprehensive standard. To be able to apply a single rule to particle size determinations, and that rule enabling all techniques of sizing to agree is implausible for several reasons. If such a definition is based on geometry it must apply to both regular and irregular shapes and to the techniques used to obtain the measurement. The simplest case in respect to geometry is that of a sphere, and visual inspection (microscopy or image analysis) is the most straightforward measurement technique. When examining a sphere, its perimeter, projected cross-sectional area, surface area, and volume can be described unambiguously by one linear dimension-- the diameter of the projected cross-section. Furthermore, the projected cross-sectional diameter remains constant regardless of the angle of view; therefore a sphere is isotropic in a geometrical sense. No other regular or irregular shape projects the same cross-section at all angles of view, therefore neither surface area nor volume can be inferred from the cross-section of a non spherical particle. 
The fact that an irregular particle can present a different cross-section depending on orientation is only one of the measurement problems. Another is that an irregularly shaped cross-section has different “diameters” depending on where the chord is drawn. To deal with these difficulties, definitions of ‘statistical geometric diameters’ were established. They are statistical because they have significance only when averaged over a large number of measurements. An example is Martin’s diameter, which is the length of the chord that divides the cross-sectional shape into two equal areas. Another is Feret’s diameter, which is the distance between two parallel lines tangent to the projected cross-section. 
To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image