Shared Resource Laboratories in the Age of Systems Biology

In the mid-1970s, the biological and biomedical sciences experienced tremendous growth in the development and application of relatively expensive and sophisticated instrumentation deemed critical for the execution of science in those fields.

Written byJay W. Fox
| 12 min read
Register for free to listen to this article
Listen with Speechify
0:00
12:00

Some of the instruments to which I refer include amino acid analyzers, peptide synthesizers, spectrometers, and protein sequencers. In addition to the high cost for the purchase of these types of instruments, there were significant costs associated with their operation and maintenance. Further, this was accompanied by the need for a significant degree of technical expertise to operate these instruments at optimal levels. It became clear to both external and internal funding sources that the existing paradigm of purchasing an expensive instrument with significant capacity for throughput and placing it in an individual’s laboratory was not an effective use of either funds or the instrument. Generally, the data required by any one individual was usually very specific and limited in the number of experiments that needed to be performed. Thus, it was not in the interest of the research faculty to master the technology, given the time and difficulty such a process demands. As a result, there began the development of “shared resources,” “cores,” or “facilities” whose function was the operation of these instruments, typically for a select group of scientists, with the aim of generating a maximal amount of data from the instruments for this group.

By the late 1970s and early 1980s, another wave of instrumentation development significantly influenced the biological and biomedical sciences; these instruments included the solid phase and gas-phase protein sequencers, DNA/oligonucleotide synthesizers, and DNA sequencers. These instruments, in addition to providing analytical and reagent support for targeted scientific fields, were also comparatively high-throughput platforms that solidified the concept of “shared resources” to broaden the cost-basis for operation by utilizing maximal throughput. Over the past two decades, there have been a variety of enhancements to those technologies as well as new technologies and platforms, such as instrumentation for gene expression profiling via DNA/oligonucleotide microarrays, proteomics utilizing mass spectrometry, and numerous front-end sample preparation technologies (e.g., 2D SDS-PAGE, orthogonal chromatographies), protein array technologies, single nucleotide polymorphisms (SNP) analysis and realtime quantitative PCR, just to name a few. All of these technologies were well suited for exploitation under the shared resource paradigm (i.e., high initial cost, high operational cost, high throughput, sophisticated operational expertise required) and further solidified the concept of institutional shared resources or cores in academic and industrial research settings.

The staffing of shared resource facilities in academic settings was generally by non-tenure track research faculty or research associates who were rarely directly involved with the research process other than to perform their specific tasks. Over time, given the everincreasing technological sophistication required for the effective operation of instrumentation, researchers were less able to critically understand the technology, and thus, became more and more reliant on the expertise of the shared resource staff. Interestingly, there seemed to be some reluctance of researchers to effectively “partner” with shared resources and their staff. An analogy of the process is of a sample anonymously pushed through a window in the wall and anonymously the resultant data returned to the investigator without significant interaction between the two parties. Furthermore, there was often little exchange between shared resource facilities within an institution and they often functioned in a scientific and technological vacuum. In addition to this organization scheme not being a particularly effective use of resources, it was not uncommon for duplication of services and facilities to be found within some institutions.

Another difficulty from the human resource standpoint was that many individuals who served in these settings felt like “second class citizens.” Many of these staff, particularly those with higher professional degrees, were left with a feeling that, although their technical skills were generally being appropriately utilized and appreciated, their scientific skills and training were not. Needless to say, this is not an effective management approach for yielding optimal productivity from staff or for generating an environment conducive to job satisfaction.

New age biology, new age cores–advent of systems biology
To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

About the Author

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image