Managing and Meeting Challenges with Multiple Fluorescence Probe Images

Development of a computational approach to quantitatively unmix overlapping spectra.

Written byRao V.L. Papineni andDouglas O.S. Wood
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

Multichannel fluorescence imaging is becoming an indispensable tool for post-genomic biological research. Most of the techniques being applied, both in vivo and in vitro, tend to require multiple labeling to visualize different events or to probe various aspects of the same subject. Overlapping emission spectra from multiple fluorescent probes complicates the acquisition and accurate analysis of individual labels and corresponding targets. To address this issue, a computational approach was developed to quantitatively unmix overlapping spectra. We initially constructed models of excitation spectra of individual fluorescent imaging agents as a superposition of multiple Gaussian functions. These models were then used to perform a quantitative unmixing of the combined spectra in milieu using a non-linear least squares optimization technique. We present here a reliable methodology to identify and quantify the individual components from multichannel fluorescent signals. Our results can be easily incorporated into any routine multispectral analysis.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image