Modeling and Simulating Science

Computation unravels old and new questions in biology and chemistry

Written byMike May, PhD
| 7 min read
Register for free to listen to this article
Listen with Speechify
0:00
7:00

Scientists use models to unravel how something works. If you’ve ever taken variously sized balls and arranged them as the planets in our solar system, then you’ve made a model. If you put that model solar system into motion, with the planets traveling through their orbits, then it’s a simulation. Although many people define modeling and simulating in very specific ways, many experts use the terms interchangeably. In any case, the interest comes from the results, not the definitions of the processes. Furthermore, this field is on fire.

It’s one thing to make a model that you can see, but imagine making a model from numbers. In computational modeling and simulation, you’d define your planets by size and weight. Then, you’d use an equation to describe each planet’s motion. Using the laws of physics, you could put the solar system into action. Even more interesting, you can perturb the system, by tipping a planet off its axis of rotation, for example, and see what happens.

Some of today’s most exciting modeling is taking place in the fields of chemistry and biology. Part of the interest comes from exploring some of the oldest questions in all of science, such as “What makes something burn?” Modeling and simulation also take on some of the newest questions, such as “How does an organism’s entire genome control its biochemistry?” To answer these questions, teams of scientists often work together.

Making mechanisms from “magic”

To provide an analogy for modeling and simulation, Jeff Hammond, Ph.D., assistant computer scientist at Argonne National Laboratory in Lemont, Illinois, described a magic trick. “If you go to a magic show, the magician will not show you the secret,” Hammond says. “All you know, for instance, is that a ball starts in the magician’s left hand and ends up in the assistant’s mouth.” We can attempt to understand the magic trick by trying to re-create it at home, which is a simulation of what was observed. If we can reproduce the whole trick, we have discovered what we couldn’t see. In thinking over models and simulations in general, Hammond says, “We’re recreating things in nature that we can’t always see.”

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

About the Author

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image