New, Simple Theory may Explain Dark Matter

Most of the matter in the universe may be made out of particles that possess an unusual, donut-shaped electromagnetic field called an anapole. This proposal, which endows dark matter particles with a rare form of electromagnetism, has been strengthened by a detailed analysis performed by a pair of theoretical physicists at Vanderbilt University.

Written byLab Manager
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

Most of the matter in the universe may be made out of particles that possess an unusual, donut-shaped electromagnetic field called an anapole.

This proposal, which endows dark matter particles with a rare form of electromagnetism, has been strengthened by a detailed analysis performed by a pair of theoretical physicists at Vanderbilt University: Professor Robert Scherrer and post-doctoral fellow Chiu Man Ho. An article about the research was published online last month by the journal Physics Letters B.

“There are a great many different theories about the nature of dark matter. What I like about this theory is its simplicity, uniqueness and the fact that it can be tested,” said Scherrer.

Elusive particle

In the article, titled “Anapole Dark Matter,” the physicists propose that dark matter, an invisible form of matter that makes up 85 percent of the all the matter in the universe, may be made out of a type of basic particle called the Majorana fermion. The particle’s existence was predicted in the 1930’s but has stubbornly resisted detection.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.
Add Lab Manager as a preferred source on Google

Add Lab Manager as a preferred Google source to see more of our trusted coverage.

Related Topics

CURRENT ISSUE - January/February 2026

How to Build Trust Into Every Lab Result

Applying the Six Cs Helps Labs Deliver Results Stakeholders Can Rely On

Lab Manager January/February 2026 Cover Image