Lab Manager | Run Your Lab Like a Business

News

New Solar Energy Research Center at Rensselaer

Researchers at the center will work to develop the next generation of solar technology by studying one of the most powerful energy converting machines in world plants. Researchers will use sophisticated new technologies and techniques to understand the energy converting power of plants to develop new technologies that mimic this extremely efficient natural system.

Thomas R. Baruch, a member of the Rensselaer Polytechnic Institute Board of Trustees and alumnus of the Class of 1960, has donated a gift that will help to establish a new center at the Institute devoted to bio-energy research. The new center — the Baruch ’60 Center for Biochemical Solar Energy Research — will conduct unprecedented research on biochemical solar technology.

Researchers at the center will work to develop the next generation of solar technology by studying one of the most powerful energy converting machines in the world – plants. Researchers will use sophisticated new technologies and techniques to understand the energy converting power of plants to develop new technologies that mimic this extremely efficient natural system.

“The center will expand the energy research network that Rensselaer is actively building across the Institute, and will offer researchers around the globe fundamental scientific research on the original solar panel – plants – as well as technological solutions to create the super-efficient man-made solar technologies of the future,” said Rensselaer President Shirley Ann Jackson.

The center will include faculty from a variety of disciplines and research backgrounds. In the initial stages, the research will center on molecular chemistry and biochemistry to map out the step-by-step processes that nature’s perfect green machines go through to convert solar rays into life-sustaining energy.

Jonathan Dordick, director of the Center for Biotechnology and Interdisciplinary Studies and a chemical engineer, also envisions strong possibilities for entirely new forms of light-capturing technologies. “Ultimately, biomimetic designs will be integrated with nature’s biological machinery to provide scalable, efficient, and broadly applicable systems that convert light into usable and storable energy. This has the potential to revolutionize future energy generation and secure our future as a safe and sustainable society.”

K.V. Lakshmi, assistant professor of chemistry and chemical biology, will help lead the effort at the center to capture the extremely complex reactions of photosynthesis in action. One of the recipients of the first-ever federal Department of Energy (DOE) funding for the investigation of biochemical solar power, Lakshmi is working with fellow assistant professors of chemistry and chemical biology James Kempf, an expert in Nuclear Magnetic Resonance (NMR) techniques, and Mark Platt, an expert in plant protein and spectroscopy, to understand how the inner workings of the plant protein complex transforms light into power through photosynthesis. Their colleagues, including assistant professor of chemistry and chemical biology and molecular chemist Peter Dinolfo, as well the faculty in disciplines from biology to chemical engineering will use this foundational knowledge to build synthetic replications of the natural systems to capture and move light energy.

Source: Rensselaer Polytechnic Institute (RPI)