PhD student Sirshendu Misra, lead researcher on the development of new encapsulation technology, working in the Micro Nano-Scale Transport Lab at the University of Waterloo

PhD student Sirshendu Misra, lead researcher on the development of new encapsulation technology, working in the Micro Nano-Scale Transport Lab at the University of Waterloo

Credit: BRIAN CALDWELL

New Way to Wrap Liquid Drops Could Improve Drug Delivery

The new encapsulation technology uses gravity and other natural forces to wrap drops as they fall through a thin layer of liquid shell floating on a base liquid

Written byUniversity of Waterloo
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00
PhD student Sirshendu Misra, lead researcher on the development of new encapsulation technology, working in the Micro Nano-Scale Transport Lab at the University of Waterloo.
Credit: BRIAN CALDWELL

Researchers have developed a faster, cheaper way to coat liquid medication, an invention that could improve how drugs are delivered in the body.

The new encapsulation technology, developed by engineers at the University of Waterloo, uses gravity and other natural forces to wrap drops as they fall through a thin layer of liquid shell floating on a base liquid.

Lab manager academy logo

Get training in Lab Crisis Preparation and earn CEUs.

One of over 25 IACET-accredited courses in the Academy.

Certification logo

Lab Crisis Preparation course

Once hardened, or cured, by exposure to ultraviolet light, the shell houses and protects the liquid core inside.

"It is a very simple technique that requires almost no energy—and it is extremely rapid," said Sushanta Mitra, executive director of the Waterloo Institute for Nanotechnology. "Encapsulation takes place in milliseconds."

When the liquid core is required—after reaching a particular area of the body for targeted drug delivery, for instance—the shell is designed to dissolve and release its contents.


Related Article: Nanotechnology Improves Chemotherapy Delivery


Mitra said the system's simplicity enables much more economical production of capsules than current methods, which include machines that wrap drops with thin gel sheets and complex microfluidic processes.

"We envision a very simple, rapid, mass-production system using syringes," said Mitra, a professor of mechanical and mechatronics engineering who is cross-appointed in chemical engineering and physics and astronomy. "With a one-shot approach, you could produce thousands of these encapsulations."

Interested in life sciences?

Subscribe to our free Life Sciences Newsletter.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

Other advantages of the technology include the ability to coat drops with multiple layers, greater flexibility in terms of drop volume and shell materials, and the production of stronger, more stable capsules.

In addition to the targeted delivery of pharmaceuticals and vitamins, potential uses for the liquid-liquid wrapping method include the production of tiny capsules to add flavors to cola drinks as they're being consumed and prolonging the shelf life of cosmetic creams containing collagen.

Mitra supervised the research involving engineering graduate students Sirshendu Misra and Kumari Trinavee, and postdoctoral fellow Naga Siva Kumar Gunda.

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - April 2025

Sustainable Laboratory Practices

Certifications and strategies for going green

Lab Manager April 2025 Cover Image