Physicists Light “Magnetic Fire” to Reveal Energy’s Path

New York University physicists have uncovered how energy is released and dispersed in magnetic materials in a process akin to the spread of forest fires, a finding that has the potential to deepen our understanding of self-sustained chemical reactions.

Written byNew York University
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

New York University physicists have uncovered how energy is released and dispersed in magnetic materials in a process akin to the spread of forest fires, a finding that has the potential to deepen our understanding of self-sustained chemical reactions.

The study, which appears in the journal Physical Review Letters, also included researchers from the University of Barcelona, City College of New York, and the University of Florida. It may be downloaded here.

Forest fires spread because an initial flame or spark will heat a substance—a trunk or branch—causing it to burn, which releases heat that causes the fire to spread to other trunks or branches, turning a small spark into a self-sustained, propagating front of fire that can be deadly and is irreversible.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image