Piezoelectric “Taxels” Convert Motion to Electronic Signals for Tactile Imaging

Using bundles of vertical zinc oxide nanowires, researchers have fabricated arrays of piezotronic transistors capable of converting mechanical motion directly into electronic controlling signals. The arrays could help give robots a more adaptive sense of touch, provide better security in handwritten signatures and offer new ways for humans to interact with electronic devices.

Written byLab Manager
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

Using bundles of vertical zinc oxide nanowires, researchers have fabricated arrays of piezotronic transistors capable of converting mechanical motion directly into electronic controlling signals. The arrays could help give robots a more adaptive sense of touch, provide better security in handwritten signatures and offer new ways for humans to interact with electronic devices.

The arrays include more than 8,000 functioning piezotronic transistors, each of which can independently produce an electronic controlling signal when placed under mechanical strain. These touch-sensitive transistors – dubbed “taxels” – could provide significant improvements in resolution, sensitivity and active/adaptive operations compared to existing techniques for tactile sensing. Their sensitivity is comparable to that of a human fingertip.

The vertically-aligned taxels operate with two-terminal transistors. Instead of a third gate terminal used by conventional transistors to control the flow of current passing through them, taxels control the current with a technique called “strain-gating.” Strain-gating based on the piezotronic effect uses the electrical charges generated at the Schottky contact interface by the piezoelectric effect when the nanowires are placed under strain by the application of mechanical force.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image