Product Resources - Analytical

GC Systems / HPLC Systems / HPLC Detectors / LC Columns / Microscopy / Mass Spectrometry

Written byLab Manager
| 13 min read
Register for free to listen to this article
Listen with Speechify
0:00
13:00

GC Systems
Tanuja Koppal

Gas chromatography (GC) systems are similar to HPLC systems in that they are used to identify, separate and quantify compounds of interest. However, GC systems use an inert, gaseous mobile phase, as opposed to a liquid phase, to bring about the separation of molecules. The basic components of a GC system include an injection system, an oven, a column, a detector and a computer system to analyze results.

There have been significant changes in GC in the past decade, and most of them have focused on maximizing throughput and decreasing run time. One of the factors limiting throughput has been the rate at which proper oven temperatures can be reached. Recent efforts have led to the development of ultrafast GC systems that incorporate advanced column heating devices and controls that can rapidly heat and cool columns. Improving speed of analysis also has been the driving force leading to changes in column technology. The use of small, nanobore capillary columns has improved throughput without sacrificing efficiency or precision. “There is a market out there for ultrafast GC columns, although they need specialized instrumentation to run it,” says Rob Bunn, product manager for GC columns & consumables at Thermo Fisher Scientific. The GC columns also have undergone improvements in sensitivity that offer lower detection limits and ultralow column bleeds. “The deactivation process has improved significantly in the past few years and has led to low activity on the column,” says Bunn.

Another development in the GC field has focused on the use of multidimensional systems that incorporate different columns and detection systems to improve sample resolution and throughput. The strategy involves using multiple columns to facilitate the separation of co-eluting peaks, such as enantiomers, or of samples that contain complex mixtures or a large number of components. A switching valve is used to route portions of effluent from one column to another column, and under certain conditions, the columns can be operated independently to increase throughput. The ability to incorporate a variety of different detectors within the system also is a huge benefit. “Mass spectrometry is fabulous as a universal detector, but we are seeing resurgence in the use of selective detectors for very specific types of applications,” says Laura Chambers, senior product specialist for chromatography products at OI Analytical Corp., who works with customers to help them reconfigure their GC systems. “In some systems you can now have an MS and three other detectors that can work in tandem.” However, to take advantage of these improved technologies, customers must first understand what it is that they need. “Customers really need to know what they want to do with the system or they are going to waste a lot of money buying things they don’t need,” says Chambers. Since most methods for GC analysis are well standardized and documented, the application and protocol often determine the types of columns, detectors and other accessories to be used. Chambers therefore advises lab managers to think carefully about what the GC system is going to be used for, the skill level of the personnel using it and where it is going to be used. “That will help them make costeffective decisions as they go through their configuration processes,” she says. Taking the type of sample, the sample load and the sample preparation into consideration also is important. Thinking through these issues will determine if any special equipment is needed and will ensure that the samples don’t overwhelm certain components of the GC system. There also are other accessories like syringes, filters and septa that play important roles in sample analysis. “When people are involved in new method development, they try a series of different columns and sometimes find that they are not getting the results they are looking for,” says Bunn. “Often, when things don’t work people blame it on the GC column, but the choice of liner and the septa are equally as important.”

Planning ahead and consulting with the vendor are important, as technologies and applications continue to evolve. “Talk to your vendor, because they have experts who know those instruments and applications inside and out, and they can be an extraordinarily valuable resource,” says Chambers. Bunn also advises GC users to regularly scan resources on vendor websites. “There is not just product information, but there is detailed information on specific applications [as well as] work flow solutions—from sample collection to analysis. A lot of companies have resources on their Web pages that help users make informed decisions,” he says.

HPLC Systems
Tanuja Koppal

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image