Project Will Improve Heat Dissipation in 3-D Microelectronic Systems

Researchers from the Georgia Institute of Technology have won a Defense Advanced Research Projects Agency (DARPA) contract to develop three-dimensional chip-cooling technology able to handle heat loads as much as ten times greater than systems commonly used today.

Written byGeorgia Institute of Technology
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

Researchers from the Georgia Institute of Technology have won a Defense Advanced Research Projects Agency (DARPA) contract to develop three-dimensional chip-cooling technology able to handle heat loads as much as ten times greater than systems commonly used today.

In addition to higher overall chip heat dissipation demands, the new approach will also have to handle on-chip hot-spots that dissipate considerably more power per unit area than the remainder of the device. Such cooling demands may be needed for future generations of high-performance integrated circuits embedded in a wide range of military equipment.

“There is really no good way to address this heat dissipation need with existing technology, and the problem is getting worse because computing power is increasing and the capabilities being put on chips are expanding,” said Yogendra Joshi, a professor in Georgia Tech’s Woodruff School of Mechanical Engineering and the project’s principal investigator. “There is a real need for developing schemes that can address high power on the whole chip coupled with very high power dissipation areas that are only a few millimeters square.”

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image