Radiation from Early Universe Found Key to Answer Major Questions in Physics

Astrophysicists at UC San Diego have measured the minute gravitational distortions in polarized radiation from the early universe and discovered that these ancient microwaves can provide an important cosmological test of Einstein’s theory of general relativity. These measurements have the potential to narrow down the estimates for the mass of ghostly subatomic particles known as neutrinos.

Written byUniversity of California - San Diego
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

The radiation could even provide physicists with clues to another outstanding problem about our universe: how the invisible “dark matter” and “dark energy,” which has been undetectable through modern telescopes, may be distributed throughout the universe.

The scientists are publishing details of their achievement in the June issue of the journal Physical Review Letters, the most prestigious journal in physics, which highlighted their paper as an “editor’s suggestion” because of its importance and significance to the discipline.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image