Hand holding rubber bands

iStock, pamirc

Renewable Route to Rubber Material

New research finds a more efficient means of producing butadiene using renewable ethanol

| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

A key ingredient in the manufacture of car tires and sneaker soles could be made sustainably, following new analysis of an old catalytic process. Butadiene, an essential component of synthetic rubber, is currently produced by the petrochemical industry from fossil reserves.

But it could be efficiently made in a one-step reaction from renewable ethanol using a modernized version of an unusual old catalyst. “Butadiene is currently produced as a byproduct of the petrochemical industry, which can lead to shortages in its supply,” explains Sang-Ho Chung, a research scientist in the labs of Javier Ruiz-Martinez, with whom he co-led the work. “Also, these routes are clearly not sustainable,” he adds.

Interested in chemistry and materials science?

Subscribe to our free Chemistry & Materials Science Newsletter.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

These challenges in butadiene production have sparked renewed interest in the Lebedev process, first developed in the 1930s, that converts ethanol to butadiene in a single catalytic reactor. “Sustainable butadiene could be made by using bioethanol in the Lebedev process or even ethanol made using cutting-edge CO-to-ethanol processes,” Chung says.

The Lebedev process is driven by silica-magnesia catalysts that are produced by an unusual method called wet kneading. The method involves combining solid catalyst precursors in water under continuous mixing.

“Wet kneading is quite uncommon in catalyst preparation, but it is often applied to prepare high-performance silicamagnesia catalysts for the Lebedev process,” Ruiz-Martinez says.

However, improved wet-kneaded catalysts have mainly been discovered by trial and error. Why some catalysts outperform others is not fully understood, and “understanding how these materials form is the first step to preparing better catalysts,” Ruiz-Martinez says.

Chung, Ruiz-Martinez, and their KAUST colleagues used solid-state nuclear magnetic resonance spectroscopy to study silica-magnesia catalyst formation under real wetkneading conditions. “We found that two different catalyst particles are formed, based on the cross-deposition of silicon species onto magnesia and magnesium species onto silica,” Chung says.

Crucially, they showed that magnesium silicates on the silica particles tend to produce ethylene as an undesired side product. “With that understanding, we could synthesize just the catalyst particles that are active for butadiene production and avoid the particles that produce ethylene,” Chung says.

The team also showed that the best catalysts also had certain active sites in very close proximity. “This has helped us to work on the next generation of catalysts for this process,” Ruiz-Martinez says. “We are making good progress and already have an even more selective version, which could be a key step for commercializing the process.”

- This press release was provided by the King Abdullah University of Science & Technology

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - March 2025

Driving Lab Success Through Continuous Improvement

Embrace nonconforming work as opportunities for growth and improved lab performance

March 2025 Lab Manager Cover Image