Lab Manager | Run Your Lab Like a Business

Researcher Awarded $1.5 Million Grant to Study Early Disease Diagnosis with Nanoparticles

University of Arkansas for Medical Sciences (UAMS) researcher Vladimir Zharov, Ph.D., D.Sc., recently was awarded a  $1.5 million grant by the National Institutes of Health to investigate the use of nanoparticles in cancer diagnosis and treatment.

by University of Arkansas for Medical Sciences
Register for free to listen to this article
Listen with Speechify

Zharov is director of the Arkansas Nanomedicine Center at UAMS and a professor in the UAMS College of Medicine Department of Otolarynology-Head and Neck Surgery.

“Seven years ago, we introduced new noninvasive blood tests for early diagnosis and prevention of cancer, infection, stroke, and heart attack.” Zharov said. “Recently using a hand-worn photoacoustic clinical device, we proved this concept with 100-fold increase in diagnostic sensitivity for melanoma patients. Now, we plan to develop a new generation of our technology using innovative nanoparticles.” 

Get training in Lab Crisis Preparation and earn CEUs.One of over 25 IACET-accredited courses in the Academy.
Lab Crisis Preparation Course

As part of the research, photoswitchable nanoparticles will be synthesized, which can change color under laser light. They also will be tested in different biological environments. The researcherswill observe how these nanoparticles interact with circulating tumor cells in blood. When these nanoparticles with drugs called nanodrugs are inside cells, applied laser radiation creates nanobubbles around nanoparticles that dramatically enhance drug action that kills cancer cells.” 

Earlier research by Zharov used gold and magnetic nanoparticles with attached antibodies for the targeting and detection of many circulating tumor cells directly in bloodstream. New photoswitchable nanoparticles provide the opportunity to label a few or even single cancer cells and track their movement in the body to better understand how cancer spreads and creates deadly metastasis. In this process, a laser that is safe to use with humans heats the nanoparticle to change it to a specific color for labelling and tracking the cancer. Laser pulses can cause the nanoparticles to produce sounds that also allow for detection. 

Researchers at the Photonics Center at Boston University recently confirmed Zharov’s findings of a distinct and switchable nanoparticle colors and were able to split one color into two sharp colors. They named this effect “Zharov splitting.” 

“The different colors allow for more specificity in tagging,” Zharov said. “We can create multiple colors from blue to red and in the near-infrared range. Light in the near-infrared range is better able to pass through biotissue, and that makes it easier to diagnose deep inside blood vessels. Right now in cancer research, fluorescent proteins are used that provide only two switchable colors in the visible range. New nanoparticles providing multiple colors are safe for use in humans, and fluorescents aren’t. With nanoparticles, we can produce 10 to 20 very distinct colors,and we can switch each color. With color splitting, we can double the number. It’s a new phenomenon in optics.” 

Zharov splitting will provide insight into the poorly understood mechanisms of early metastatic disease and could help develop advanced diagnosis techniques and individualized therapies. This ability can enable the research community to discover and assess the physiological and pathological mechanisms related to health and diseases, including studies of immune system function, bacteremia, sepsis and clotting making at the single-cell level. This technology makes single cell analysis in circulation feasible. 

When nanoparticles are combined with anti-cancer drugs, they also can be heated in such a way as to make the drugs — called a photothermal nanodrug — more effective. Further research by Zharov and his team, funded by the new grant, will look at expanding this exciting research. 

“By attaching the drug molecules to nanoparticles, we can enhance their efficiency,” Zharov said. “In particular, we enhance the local nanoparticle surface temperature that activates the drug’s performance and the drug is released at a specific intracellular location. Thus, this ‘nanodrug bullet’ can reach temperature- and drug-sensitive cellular nanostructures that are resistant to the drug under conventional conditions.” 

The NIH panel that reviewed Zharov’s grant application gave it the best score (10) and percentile (1) from among all the grant applications it reviewed in its most recent funding cycle.