Researchers Design “Evolutionary Trap” to Thwart Drug Resistance

Cancer is a notoriously evasive disease. It can adopt multiple identities, accumulating mutations or even gaining or losing whole chromosomes to create genetic variants of itself that are resistant to whatever drug is thrown its way.

Written byStowers Institute for Medical Research
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

This ability to evolve to changing conditions and new therapies can turn cancer care into a game of whack-a-mole, as clinicians hit cancer cells with one treatment after another only to have new drug resistant forms pop up.

Now, using theoretical and experimental approaches, researchers at the Stowers Institute for Medical Research have developed a two-pronged strategy that uses an evolving cell population’s adaptive nature against it. First, the method was designed to steer the cell population into one evolutionary path, shutting off the other openings where it might rear its ugly head. Once the cells are trapped in this way, the method then positions its hammer over the single remaining target, knocking out the cell population for good.

The new approach, which the researchers call an “evolutionary trap,” was reported February 12, 2015 in Cell. The strategy may potentially be applied not just to cancer treatment but also to other clinical scenarios where drug resistance is a problem, such as fungal infections.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image